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1 Introduction
In this Data Mining project, a number of supervised and unsupervised machine learning techniques are
used on a real dataset for comparison purposes. The usefulness and prediction accuracy of a particular
data mining technique is most often dataset dependent. Two learning problems are addressed in this
project : predicting a continuous outcome and classifying a categorical (binary) outcome in the dataset
from a number of p > 10 predictor covariates (which can be continuous or categorical). Three data
mining tasks are conducted :

1. Supervised learning to predict a continuous outcome as precisely as possible. Three approaches
are compared : Lasso regression (parametric shrinkage method), regression tree (non parametric
method) and random forest (non parametric).

2. Supervised learning to classify a binary outcome as accurately as possible (with lowest misclassi-
fication rate as possible). Two approaches are compared : K-nearest neighbors (non parametric)
and Support Vector Machine.

3. Unsupervised learning to discover patterns or clusters (stratification or segmentation in the data).
Hierarchical and Partition Clustering are compared.

1.1 Dataset
The approved dataset was described in a previous document.

There are 198 observations (patients) with 31 input variables, one continuous output variable (tumor
size) and one binary outcome variable (recurrent or non recurrent tumor). 151 patients in the dataset had
a non-reccurent tumor (76.26%) and 47 patients had a recurrent tumor (23.74%).

The interested reader will find a full description in the appendix.

1.2 Objectives of the Study
The primary objective of the study is to develop a classifier for predicting whether a patient has a recurrent
or a non-recurrent breast cancer from the characteristics of a fine needle tissue aspiration (a tissue sample
taken with a hollow needle from a mass under the skin), plus Tumor Size and Lymph Node Status at
Surgery time. A secondary objective is to predict the size of the tumor (in centimeters) and compare it
with the real excised tumor size. See Mangasarian and Wolberg for details [2].

1.3 Missing Data or Missing Attributes
One of the attribute in the data : ”Lymph Node Status” (the number of positive axillary lymph nodes ob-
served at time of surgery) is missing for 4 patients (patients ID = 844359, 854253, 877500 and 947204).
Examining Figure 7 in appendix, it is suspected that the Lymph Node Status is partially informative in
classifying between Recurrent (blue) or Non recurrent (red) breast cancer.
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Non-recurrent tumors tend to be associated with a higher occurrence of Lymph Node Status equal to zero.
For this reason, the attribute was kept but the 4 patients with this missing attribute were removed from
the data. Removing 4 patients out of the 198 with their 32 variables is better than removing the whole
attribute for 194 patients because less information is lost.

The assumption is made that the attribute was missing completely at random across the patients. The
fraction of observations removed is about 2% and is considered acceptable.

We kept all the remaining 194 patients in the analysis and most importantly kept all the attributes.

2 Methods
The used data mining methods are described hereafter and the corresponding R scripts are given in the
appendix.

2.1 Supervised Learning for prediction
2.1.1 Lasso Regression (parametric)

For prediction accuracy and model interpretability, a linear model with regularization (shrinkage) method
is used to predict the Tumor Size (in centimeters) continuous outcome at time of surgery. The Lasso1

modeling approach involves fitting a linear model with all the p=31 predictors but with a shrinkage
performed so that some of the coefficients may be estimated exactly to zero. Hence, this approach can
also perform variable selection and is prone to deliver a model that is easier to interpret. Constraining or
shrinking the estimated coefficients can reduce the variance at the cost of some increase in bias (see [4] -
Chap. 6).

Lasso Model : The lasso coefficients βLλ minimize the residual sum of square (RSS) as in classical linear
regression but with the extra constraint that the sum of the absolute values of the βj be less than
some given constraint parameter t.

βLassoλ = argminβ

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj
)2

subject to
p∑
j=1

|βj | ≤ t

Minimizing a function under a constraint is equivalent to the Lagrange formulation to solve an
optimization problem :

βLassoλ = argminβ
{1
2

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj
)2

+ λ

p∑
j=1

|βj |︸ ︷︷ ︸
L1 penalty

}

Tuning : The λ coefficient in the penalty term is used as tuning parameter to minimize the mean square
error by cross validation on the training set. The minimal Mean Square Error (MSE) at optimum
λ is computed. Once the optimum λ is found, the fitted Lasso model is used for prediction on the
test set.

Standardization : The variables in the data are standardized so that they are on the same scale prior to
fitting the model sequence (the glmnet() function in the R glmnet library does standardization
by default and returns the coefficients back on the original scale [3]).

1LASSO is an acronym for Least Absolute Shrinkage and Selection Operator.
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Precision Measure of the prediction : The Lasso model predicted values for the Tumor Size based on
the predictor values of the test dataset are compared with the test real observed Tumor Size out-
comes. A Mean square error is computed (and standard deviation) that will provide the measure of
the prediction precision.

2.1.2 Regression Tree (non parametric)

A non parametric tree based model is chosen for the continuous Tumor Size outcome prediction, namely
the CART method (Classification and Regression Tree). The algorithm is the following ([4] - Chap. 8,
pp.303-311) :

Tree Growing : Use top-down recursive binary splitting to grow a large tree on the training data, stop-
ping only when each terminal node has few than some minimal number of observations.

Tree Pruning : The criterion for a good tree is the one with the lowest test error rate. Apply cost com-
plexity pruning to the large tree in order to obtain a sequence of best subtree as a function of the
tuning parameterα. For each value of α there is a subtree T ⊂ T0 such that

|T |∑
m=1

∑
i:xi∈Rm

(
yi − ŷRm

)2
+ α|T |

where T indicates the number of terminal nodes of the tree and ŷRm
is the mean of the training

observations in theRm. The tuning parameter α controls the trade-off between the tree complexity
and its fit to the training data.

K-fold cross-validation : The optimum α is found by K fold cross-validation. That is, the training data
is divided into K folds. For each k = 1, · · ·,K :

1. Repeat Tree Growing and Tree Pruning on all but the kth fold of the training data.

2. Evaluate the mean squared prediction error (deviance) on the data in the left-out kth fold as a
function of α.

Average the results for each value of α and pick up the one that minimizes the error.

Final subtree selection : Return the subtree from the Tree Pruning that corresponds to the optimal α.

2.1.3 Random Forest (non parametric)

The decision trees suffer from high variance. Bootstrap aggregation (or bagging) is a general purpose
procedure for reducing the variance of statistical learning methods. Many training sets replicates are gen-
erated by bootstrapping (sampling with replacement) within the single training set. We finally average
all the predictions for all the bootstrap replicates. This is called bagging. There is no single tree anymore
easy to interpret but the relative importance of the variables can be ranked for RSS or node purity reduc-
tion. Random forests provide an improvement over bagged trees by way of de-correlating the trees (see
[4]-Chap. 8.2.2, pp.320-321). Each time a split in a tree is considered, a random sample of m predictors
is chosen as split candidates from the full set of the p predictors. The split is allowed to use only one of
the m predictors. A new sample of m predictors is taken at each split, and typically m =

√
p (in our data,

m=6 predictors are randomly selected at each split). This prevents the shortcoming observed in bagging
that all the trees look quite similar to each other if there is some strong predictor in the dataset which will
be used in the top split. Random forests overcome this problem by forcing each split to consider only a
subset of predictors. Using a small value of m in building a random forest is typically helpful when there
is a large number of correlated predictors and in high dimensional data.
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2.2 Supervised Learning for classification
Two classification approaches will be compared on the breast cancer dataset : k-Nearest Neighbors and
Support Vector Machine with radial kernel.
The model accuracy is assessed by the classification accuracy (or equivalently by the misclassification
error rate).
Depending on the meaning of the predicted outcome, a full confusion matrix, or a sensitivity (True
Positive Rate), or a specificity (1 minus False Positive Rate), or a ROC curve, can be used to assess the
predictive performance of a classifier.
In the breast cancer dataset application, the sensitivity is paramount because it is more important for a
recurrent patient to be correctly classified than for a non recurrent patient. Hence, accuracy, sensitivity
and specificity will be compared for all the classifiers but with sensitivity being the primary concern here
for the quality of the classifier.

2.2.1 k-nearest-neighbors - kNN (non parametric)

The k-Nearest Neighbors approach is used to classify the type of tumor in the breast cancer dataset.
The k-Nearest Neighbors classifier takes a positive integer k and a test observation x0, identifies the k
points in the training data that are closest to x0 (using some distance metric like the euclidean distance).
The closest points belong to a subset calledN0. Then, the conditional probability for class j is estimated
as the fraction of points in N0 whose response values equal j :

P (Y = j|X = x0) =
1

k

∑
i∈N0

I(yi = j)

Finally, the kNN method classifies the test observation x0 to the class with the largest probability.
It is important to standardize the data (scaling) before conducting the kNN classification so that there is
no scale effect due to differences in variable scales (differences in measurement units).
The precision of the classifier depends on k. With k=1, the training error rate is low, but the test error
rate may be quite high. As 1/k increases the method is more flexible but the error rate gets worse.
Cross validation will be used to find the optimal k for which the error rate is minimum or for which the
sensitivity is the largest.

2.2.2 Support Vector Machine with radial kernel

The Support Vector Machine (SVM) extends the support vector classifier using kernels in order to enlarge
the features space to accommodate a non-linear boundary between the classes [4] - Chap.9.3, pp.350-
366. SVM algorithms use inner products of the observations instead of the observations themselves. A
generalization replaces the proper inner product by a kernel function of different non linear forms like
the radial kernel, which writes

K(xi, xi′) = exp(−γ
p∑
j=1

(xij − xi′j)2)

Note that for large Euclidean distances, the kernel is small (the data should also be standardized). The
support vector classifier, when non linear, is called a support vector machine and has the form

f(x) = β0 +
∑
i∈S

αiK(x, xi)

The radial basis function maps samples into a higher dimensional space (the kernel trick) and can handle
relations between class labels and predictors that are non linear.

SVM Tuning : When fitting an SVM with a radial kernel, two parameters can affect the results : γ and
cost. γ is the kernel parameter that controls the shape of the separating hyperplane. Larger values
for γ results in larger number of support vectors. The cost parameter represents the cost of making
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errors. A large value severely penalizes errors and yields more complex classification boundaries,
less misclassification, but overfitting may result in poor predictive power in new samples. γ and
cost are always positive real values. Different combination of gamma and cost are tuned via a grid
search (γ = 0.1, 0.5, 1.5, 2, 3, 5 and cost=1, 10, 100, 1000). The best combination with fewest
errors is retained by cross-validation.

2.3 Unsupervised Learning
The questions we are addressing in unsupervised analysis with the breast cancer dataset are :

1. What are the similarities and differences among the 194 patients based on the 32 measures made
on their fine needle aspirate, tumor size and lymph node status ?

2. Is there a pattern or a smaller number of groups into which these patients can be meaningfully
clustered ? How many subtypes are there (if any) and what are their characteristics ? We did not
incorporate the known binary outcome (R or N) in the analysis because a genuinely unsupervised
analysis is conducted.

Finally, with the partition clustering around medoids (with k=2) we can assess the meaning of our ob-
tained clusters and see if there is some association with the observed binary classification (this could be
viewed as a supervised meaningful test of the PAM clustering results).
Again, in order to prevent units scale effects, we standardized the data (mean zero and unit standard
deviation) before conducting the analysis.

2.3.1 Hierarchical Cluster Analysis

The Hierarchical clustering does not require to choose the number of clusters upfront. We use here the
agglomerative (bottom-up) as opposed to the divisive paradigm (top-down). The algorithm is as follows

1. Lowest level start : Define each observation as a cluster (row).

2. Distance calculation : Calculate the distances (single linkage, complete linkage, average linkage,
centroid or Ward) between every cluster and every other cluster.

3. Merging : Combine the two clusters that have the smallest distance. This reduces the number of
clusters by one. The average linkage distance is used in our analysis because it is less likely to
chain and less susceptible to outliers.

4. Repeat steps 2 and 3 : until all clusters have been merged into a single cluster containing all the
observations.

Rather than performing hierarchical clustering on the entire data matrix, it can be performed on the first
few principal component score vectors. This helps to remove a bit of noise in the data. We performed the
hierarchical cluster analysis on the first 4 PC of the 32 predictors.

2.3.2 Partitioning Cluster Analysis

Partitioning Around Medoids (PAM) is used because it is more robust to outliers than the k-means cluster
analysis. Rather than representing each cluster using a centroid (a vector of variable means), each cluster
is identified by its most representative observation (called a medoid). Any distance measurement can be
used but the Euclidean metric distance is used here. The PAM algorithm is as follows [6] - Chap 16,
pp.382-383 :

1. Randomly select K observations (call each a medoid).

2. Calculate the distance/dissimilarity of every observation to each medoid.

3. Assign each observation to its closest medoid.

4. Calculate the sum of the distances of each observation from its medoid (total cost)
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5. Select a point that isn’t a medoid, and swap it with its medoid.

6. Reassign every point to its closest medoid.

7. Calculate the total cost.

8. If this total cost is smaller, keep the new point as a medoid.

9. Repeat steps 5-8 until the medoids don’t change.
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3 Results

3.1 Supervised Learning for prediction
3.1.1 Lasso Regression results
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Figure 1: Lasso λ tuning on the training set minimizing Mean Square Error (left panel) and Comparison
of estimated and observed Tumor Size on the test set (right panel).

The best lambda value obtained by tuning is λ = 0.2420956 (logλ = −1.418423) providing the lowest
error on the training set and retaining 4 parameters, including the intercept (see left panel on Figure 1).
The best Lasso model to predict the Tumor Size reads

Y = β0 + β7 · Area Mean + β12 · Symmetry Mean + β35 · Lymph Node Status (1)

where the β’s are tabulated in Table 1.

Table 1: Fitted Lasso model estimated parameters with tuning λ minimizing MSE.

Effect Parameter Estimated
value

Intercept β0 2.557497
Area Mean β7 0.000127

Symmetry Mean β12 -1.171983
Lymph Node Status β35 0.128490

The right panel in Figure 1 compares the predicted and the observed Tumor Size on the test set. The
Mean Square Error and standard deviation (ŝ.e.) on the Tumor Size Prediction based on the Lasso model
on the test dataset are MSE= 1.916 and ŝ.e. = 1.384 centimeter.
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3.1.2 CART results

|LymphNodeStatus < 5.5

FractalMean < 0.054645

LymphNodeStatus < 1.5
SmoothnessMax < 0.1305
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CompactnessSD < 0.026315

SymetryMax < 0.30365

SymetrySD < 0.01608

ConcavitySD < 0.0427

3.500
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7.333
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|
LymphNodeStatus < 5.5

2.132 5.129

Figure 2: Classification and Regression Tree for the Tumor Size in cm (left panel : initial tree, right panel
: final tree).
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Figure 3: Tree size tuning (left panel) and Final Regression Tree (with 2 nodes) Model Evaluation (right
panel).

The best Classification and Regression Tree (CART) model is very simple and is graphically displayed
on the right panel of Figure 2. The CART prediction reads like this : if the Lymph Node Status is less
than or equal to 5, the predicted Tumor Size is 2.132 cm, otherwise the predicted Tumor Size is 5.129
cm.
The right panel in Figure 3 compares the predicted and the observed Tumor Size on the test set.
The Mean Square Error and standard deviation (ŝ.e.) on the Tumor Size Prediction based on the CART
model on the test dataset are MSE= 3.466 and ŝ.e. = 1.862 centimeter.
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3.1.3 Random Forest results
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Figure 4: Random Forest Variable Importance for Tumor Size (left panel) and Comparison of estimated
and observed Tumor Size on the test set (right panel).

The 4 most important variables, causing most of the decrease in accuracy in the out-of-bag sample when
excluded, for the Tumor Size prediction are Lymph Node Status, Symmetry SD, Symmetry Mean and
Area Mean. The right panel in Figure 4 compares the predicted and the observed Tumor Size on the test
set. The Mean Square Error and standard deviation (ŝ.e.) on the Tumor Size Prediction based on Random
Forest model (with m=6 predictors at each split) on the test dataset are MSE= 4.806 and ŝ.e. = 2.192
centimeter.

4 Supervised Learning for Classification
4.0.1 k-nearest-neighbors - kNN results

Figure 5 shows the k-NN test error rate (in black) along with the sensitivity, i.e the True Positive Rate (in
red), as the level of flexibility (assessed using 1/k) increases or equivalently as the number of neighbors
decreases. A good compromise between accuracy and specificity is obtained when k=3. A value of k=3
gives the best sensitivity (= 12.9%) on the test set, which is a poor performance for a diagnostic tool.
The confusion matrix for the k-NN classifier with k=3 is tabulated in Table 2.

Table 2: Confusion matrix for the kNN classifier with k=3 on the test set.

Predicted class
− or Non recurrent + or Recurrent Total

True - or Non-recurrent tn=61 fp=5 66
class + or Recurrent fn=27 tp=4 31

Total 88 9 97

The accuracy is (tn + tp)/97 = (61 + 4)/97 = 0.67. The misclassification rate is 1− 0.67 = 0.33. The
sensitivity (True Positive Rate) is tp/(fn + tp) = 4/(27 + 4) = 0.129. The specificity (1 minus False
Positive Rate) is tn/(tn + fp) = 61/(61 + 5) = 0.924. Although the accuracy is good, the sensitivity
(=power) of the kNN classifier is poor and the type II error (probability of accepting the null given it is
false) is 0.871.

9



Data Mining 2016/2017

●

●

●

●

●●●

0.2 0.4 0.6 0.8 1.0

●

●

●

●

●

●

●0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

S
en

si
tiv

ity

k Nearest Neighbor Test Error Rate
 and Sensitivity vs Flexibility

Flexibility = 1/k

Te
st

 E
rr

or
 R

at
e

Figure 5: Misclassification rate (black) and sensitivity (red) versus k=number of nearest neighbors.

4.0.2 Support Vector Machine with radial kernel results

The best tuned parameters are γ = 0.1 and cost = 1.
The confusion matrix for the SVM classifier with γ = 1 and cost=1 for the test set is tabulated in Table
3.

Table 3: Confusion matrix for the SVM classifier with γ = 0.1 and cost=1 on the test set.

Predicted class
− or Non recurrent + or Recurrent Total

True - or Non-recurrent tn=59 fp=7 66
class + or Recurrent fn=28 tp=3 31

Total 87 10 97

The accuracy is (tn + tp)/97 = (59 + 3)/97 = 0.64. The misclassification rate is 1− 0.64 = 0.36. The
sensitivity (True Positive Rate) is tp/(fn + tp) = 3/(28 + 3) = 0.097. The specificity (1 minus False
Positive Rate) is tn/(tn + fp) = 59/(59 + 7) = 0.894. Although the accuracy is good, the sensitivity
(=power) of the SVM classifier is poor and the type II error (probability of accepting the null given it is
false) is 0.903. SVM does not outperform the kNN classifier. Both classifiers give a similar confusion
matrix. Neither of the 2 classifiers provides a sufficient sensitivity.
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4.1 Unsupervised Learning
4.1.1 Hierarchical Clustering results

Euclidean distances between each of the 194 patients are calculated, and the average-linkage cluster-
ing has been performed on the first 4 principal component score vectors. The results were plotted as a
dendrogram (not reproduced here). The dendrogram displays how patients are combined into clusters
and is read from the bottom up. Each observation starts as its own cluster. Then the two observations
that are closest are combined. This continues until all observations are combined into a single cluster.
The dendrogram creates a hierarchical view of the similarity-dissimilarity among the 194 patients. Al-
though nested clustering could be expected in the dataset, there is no obvious meaningful hierarchy in the
dendrogram.

4.1.2 Partition Clustering results

 

Figure 6: Bivariate plot for 2 principal components and partition around medoid clustering (left panel).
Silhouette plot (right panel).

The cluster plot (left panel) for the two group partitioned around medoids clustering of the breast cancer
data is displayed on Figure 6 along with the silhouette plot (right panel). The two medoids are actual
observations contained in the dataset. In this case, they are observations 126 and 51 corresponding to pa-
tient ID 89812 and 862717 chosen to best represent the two clusters. The bivariate plot axes are the 2 first
principal components derived from the 32 predictor variables. Each cluster is represented by an ellipse
with the smallest area containing all its points. Note that observation 126 is of type R (= Recurrent) and
observation 51 is of type N (= Non recurrent).

The agreement between the Tumor type (N or R) and the cluster is quantified using an adjusted Rand
index (which provides a measure of the agreement between two partitions, adjusted for chance; it ranges
from -1, no agreement, to 1, perfect agreement). The agreement between the observed tumor type (N or
R) and the cluster solution is very poor : Rand index = 0.0248. The partitioned around medoids clustering
appears not to be associated with the tumor type and is here meaningless in discriminating between R or
N patients.
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5 Discussion
Three predictors are selected by the Lasso shrinkage method in the prediction model for the Tumor Size.
The Area Mean contribute positively in the prediction of the Tumor Size while the Symmetry Mean con-
tribute negatively. The higher the Lymph Node number, the higher the Tumor Size. This is in line with
our preliminary exploration illustrated on Figures 7 and 8 in the appendix.

The final CART tree is very simple, easy to interpret and is based on a single splitting rule using Lymph
Node Status only.

Random Forest, less easy to interpret, did not improve the predictive power of the Tumor Size outcome
variable.

The CART model precision is poorer than for the Lasso model and the Random Forest is poorer than the
CART model (the standard deviation ŝ.e. for the tumor size estimation, on the test set, were 1.384, 1.862
and 2.192 centimeters respectively for Lasso, CART and Random Forest).

The supervised learning methods used for the classification of the Tumor Type (R or N) both show sim-
ilar misclassification results on the test set : the misclassification errors are 33% with the k-Nearest
Neighbours and 36% with the support vector machine with tuned radial kernel (γ = 1 and cost=1). The
sensitivity (probability to detect a recurrent tumor when there is one) is very poor : 12.9% and 9.7%
respectively, leading to the conclusion that the feature space (inputs) does not provide strong enough
informative association to the targeted binary output.

The kNN method certainly suffers from the curse of dimensionality : spreading 194 observations over
p=31 dimensions results in a phenomenon in which a given observation has in fact no nearby neighbors.
The value k = 3 represents 1.55% of the volume of the observations to form a local average, but even
with such a small volume fraction, 87% of the range of each input variable must be covered if the in-
put data are uniformly distributed in the features space (ep(r) = 0.01551/31 = 0.87) as emphasized
by Hastie et. al. ([5]-Chap.2.5, pp.22-23). So, the kNN classification method mainly yields a global
(non-local) majority vote on the observed outcome directly, with poor sensitivity to the input local data.
It is documented in the literature that non-parametric approaches like kNN often perform poorly when p
is large ([4]-Chap 3.5, pp.108-109).

The poor results of SVM, as well, indicates that there appears to be no clear boundary of separation be-
tween the regions corresponding to each class. No improvement of the classification prediction rate were
contributed by SVM on the dataset.

The analysis conducted here to find a good predictive model for the continuous output (tumor size) or a
good classifier with high predictive power for the binary output (recurrent or non recurrent tumor) does
not provide straightforward evidence that some strong predictor in the input space should be selected as
highly informative or as significantly meaningful.

For the tumor size outcome prediction, the Lasso method selected 3 predictors out of the 31 from the fea-
ture space, namely : Area Mean, Symmetry Mean and Lymph Node Status. The Random Forest indicated
that the 3 variables most contributing to variance reduction are Lymph Node Status, Symmetry SD and
Symmetry Mean. In the regression tree, Lymph Node Status, Symmetry SD, Fractal Mean, Compactness
SD, Smoothness Max and Concavity SD were among the top splitting variables used to build the initial
tree but pruning left Lymph Node Status only.

The Lymph Node Status is the feature that is mostly associated to the Tumor Size. But as far as the other
input variables are concerned, the data mining algorithms used did not provide a clear consistent overlap
of the selected features among the 30 cytological measurements.
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In the unsupervised learning approaches, without a ”teacher” to provide validation, the methods will
always find clusters. One should be very cautious in the interpretation of the cluster analysis and self
refrain to identify clusters that are ”real” in some sense rather than noticing a convenient partitioning.

The ability of cluster analysis to find erroneous clusters makes the validation step of cluster analysis im-
portant. Different clustering methods should be used, replicated with new samples. If the same clusters
were consistently recovered, more confidence on the results would be gained.

In the breast cancer dataset cluster analysis, the partition clustering (PAM) was contrasted to the binary
real observations and showed that there were no association (no agreement) between the Tumor Type
observed classification and the clusters derived from the PAM algorithm with k=2.

Besides, the hierarchical clustering appears to be difficult to interpret with a large number of observations.
The N and R binary outcome labels have been superimposed in the dendrogram showing that there is no
obvious hierarchical pattern consistently discriminating the breast cancer type.
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6 Appendix

6.1 Dataset full description
The approved dataset used in this project is called the Wisconsin Prognostic Breast Cancer dataset, avail-
able as text file on the UCI Machine Learning Repository [1]. Ten cytological characteristics on the cell
nucleus collected in fine needle tissue aspiration are recorded. For each of the ten cytological character-
istics, the mean, standard deviation and maximum values are recorded, providing a total of 30 continuous
variables that are available as features space. The 10 cytological variables are :

1. Radius

2. Texture

3. Perimeter

4. Area

5. Smoothness (local variation in radius lengths)

6. Compactness (perimeter squared divided by area minus 1)

7. Concavity (severity of concave portions in the contour)

8. Concave points (number of concave portions in the contour)

9. Symetry

10. Fractal dimension

Each observation (patients) has 35 fields recorded. Field 1 is ID, Field 2 is the binary outcome (N or R),
field 3 is the recurrence time or disease free time, fields 4-13 are the ten cytological variables (means),
field 14-23 are the ten cytological standard deviations, field 24-33 are the ten cytological maximal values,
field 34 is the tumor size in centimeters and field 35 is the lymph node status (number of positive axillary
lymph nodes observed at time of surgery).
The 3 outcome variables are :

• Binary outcome : R = recurrent tumor or N = non-recurrent tumor : field 2.

• Continuous outcomes :

1. Tumor size (diameter in cm) of the excised tumor (after surgery) : field 34.

2. Recurrence time (in months) if binary outcome is R or disease free time if binary outcome is
N : field 3.
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6.2 Missing Data or Missing Attributes Exploration
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Figure 7: Lymph Node Status and Tumor Size
faceted by Tumor Type (N in red or R in blue.)

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

0.0

2.5

5.0

7.5

10.0

N R

Tumor Type (Non−Recurrent, Recurrent)

Tu
m

or
 S

iz
e 

in
 c

m

BinY

N

R

Tumor Size Boxplots

Figure 8: Association of Tumor Size at Time of
Surgery to Tumor Type.

6.3 R scripts :
#-------------------------------------------------------------
# Continuous Outcome Prediction - First method
# SHRINKAGE Method - LASSO Regression
# Find a prediction model for Tumor Size versus Features space
#-------------------------------------------------------------
install.packages("glmnet")
library("glmnet")
# Keep the lymph node Status attribute but remove the 4
observations for which this attribute is missing
NoMissBC <- bc[is.na(bc$LymphNodeStatus)==FALSE,]
str(NoMissBC)
colrm <- c(-1,-2, -3) # remove ID, BinY and RecurTime
NoMissbrca <- NoMissBC[colrm]
names(NoMissbrca)
str(NoMissbrca)
x <- model.matrix(ContYTumorSize˜.,NoMissbrca)[, -31]
y <- NoMissbrca$ContYTumorSize
x
y
grid <- 10ˆseq(10, -2, length=100)
grid

set.seed(1)
train <- sample(1:nrow(x), nrow(x)/2)
test <- (-train)
train
test
y.test <- y[test]
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y.test
y.train <-y[train]
y.train

lasso.mod <- glmnet(x[train, ], y[train], alpha=1, lambda=grid)
plot(lasso.mod)

set.seed(1)
cv.out <- cv.glmnet(x[train, ], y[train], alpha=1)
pdf("Lasso.pdf")
plot(cv.out,
main="Training set Lambda tuning for Lasso\n L1 penalised regression on Tumor
Size outcome\n\n")
dev.off()

bestlambda <- cv.out$lambda.min
bestlambda
loglambda <- log(bestlambda)
loglambda
lasso.pred <- predict(lasso.mod, s=bestlambda, newx=x[test,])
lasso.pred
mean((lasso.pred-y.test)ˆ2)
stddev <- sqrt(mean((lasso.pred-y.test)ˆ2))
stddev

out <- glmnet(x, y, alpha=1, lambda=grid)
lasso.coef <- predict(out, type="coefficients", s=bestlambda)[1:32, ]
lasso.coef
lasso.coef[lasso.coef !=0]

# Compare observed and predicted values on the test set :
pdf("LassoPred.pdf")
plot(lasso.pred, y.test, xlim=c(0,11), ylim=c(0,11),
main="Comparison of LASSO estimated and observed\n Tumor Size in test set",
xlab="Y hat estimation for Tumor Size",
ylab="Y observed for Tumor Size")
abline(0,1)
dev.off()

#-------------------------------------------------------------
# Continuous Outcome Prediction - Second method
# REGRESSION TREE
# NON-PARAMETRIC METHOD
# Find a prediction model for Tumor Size versus Features space
#-------------------------------------------------------------
NoMissbrca
str(NoMissbrca)
names(NoMissbrca)

install.packages("tree")
library(tree)
set.seed(1234)
train <- sample(1:nrow(NoMissbrca), nrow(NoMissbrca)/2)
train
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tree.brca <- tree(ContYTumorSize˜., NoMissbrca, subset=train)
summary(tree.brca)
#pdf("InitialTree.pdf")
plot(tree.brca)
text(tree.brca, pretty=0)
#dev.off()

# prune trees and deviance :
pruned.brca.trees <- prune.tree(tree.brca)
pruned.brca.trees
summary(pruned.brca.trees)
plot(pruned.brca.trees)

# cross-validation :
cv.brca <- cv.tree(tree.brca, FUN=prune.tree)
cv.brca
summary(cv.brca)
pdf("TuningTree.pdf")
plot(cv.brca$size, cv.brca$dev, type="b",
main="Tuning for Optimal Size of the Tree",
xlab="Tree Size",
ylab="Deviance")
dev.off()

final.brca.tree <- prune.tree(tree.brca, best=2)

pdf("FinalTree.pdf")
plot(final.brca.tree)
text(final.brca.tree, pretty=0)
dev.off()
# predictions on the test set :
yhat <- predict(final.brca.tree, newdata=NoMissbrca[-train,])
brca.test <- NoMissbrca[-train, "ContYTumorSize"]
pdf("Compared.pdf")
plot(yhat, brca.test, xlim=c(0,11), ylim=c(0,11),
main="Comparison of estimated and observed\n Tumor Size in test set with 2
nodes tree",
xlab="Y hat estimation for Tumor Size",
ylab="Y observed for Tumor Size")
abline(0,1)
dev.off()

TestMSE <- mean((yhat-brca.test)ˆ2)
TestMSE
seTestMSE <- sqrt(TestMSE)
seTestMSE

#-------------------------------------------------------------
# Continuous Outcome Prediction - Third method
# RANDOM FOREST
# NON-PARAMETRIC METHOD
# Find a prediction model for Tumor Size versus Features space
#-------------------------------------------------------------
library(randomForest)
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train
length(train)
# RANDOM FOREST :
set.seed(1234)
rf.brca <- randomForest(ContYTumorSize˜., data=NoMissbrca,
subset=train, mtry=6, ntree=2000, importance=TRUE)
rf.brca
yhat.rf <- predict(rf.brca, newdata=NoMissbrca[-train,])
pdf("rf.pdf")
plot(yhat.rf, brca.test, xlim=c(0,12), ylim=c(0,12),
main="Comparison of Random Forest estimated and observed\n
Tumor Size in test set",
xlab="Y hat estimation for Tumor Size",
ylab="Y observed for Tumor Size")
abline(0,1)
dev.off()
TestMSE <- mean((yhat.rf-brca.test)ˆ2)
TestMSE
seTestMSE <- sqrt(TestMSE)
seTestMSE

importance(rf.brca, type=1)
pdf("VarImp.pdf")
varImpPlot(rf.brca, type=1)
dev.off()

#-------------------------------------------------------------
# Classifcation
#-------------------------------------------------------------
library(class)
#------------ prepare data and standardize the data :
# Keep the lymph node Status attribute but remove the 4
observations for which this attribute is missing
NoMissBC <- bc[is.na(bc$LymphNodeStatus)==FALSE,]
str(NoMissBC)
colrm <- c(-1, -2, -3)
x <- NoMissBC[colrm]
#-------------------------------------------------------------
# Standardization (scaling) :
#-------------------------------------------------------------
standardized.x <- scale(NoMissBC[colrm])
standardized.x
var(x[, 1])
var(standardized.x[, 1])
#-------------------------------------------------------------
# Training set and Test set split :
#-------------------------------------------------------------
set.seed(7007)
train <- sample(194, 97)
x.train <- standardized.x[train,]
x.test <- standardized.x[-train,]
str(x.train)
y.train <- NoMissBC$BinY[train]
y.train
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y.test <- NoMissBC$BinY[-train]
y.test
#-------------------------------------------------------------
# Binary Outcome Prediction - First Classification method
# k Nearest Neighbors
#-------------------------------------------------------------
#--- KNN :
set.seed(7)
#--- KNN with K=1 :
knn.pred <- knn(x.train, x.test, y.train, k=1)
knn.pred
t <- table(knn.pred, y.test)
mean(y.test==knn.pred)
tn <- t[1, 1]
fn <- t[1, 2]
fp <- t[2, 1]
tp <- t[2, 2]
sensitivity1 <- tp/(tp + fn)
specificity1 <- tn/(tn + fp)
accuracy1 <- (tp + tn)/(tp + tn + fp +fn)
accuracy1

#--- KNN with K=2 :
knn.pred <- knn(x.train, x.test, y.train, k=2)
table(knn.pred, y.test)
mean(y.test==knn.pred)
t <- table(knn.pred, y.test)
tn <- t[1, 1]
fn <- t[1, 2]
fp <- t[2, 1]
tp <- t[2, 2]
sensitivity2 <- tp/(tp + fn)
specificity2 <- tn/(tn + fp)
accuracy2 <- (tp + tn)/(tp + tn + fp +fn)
accuracy2

#--- KNN with K=3 :
knn.pred <- knn(x.train, x.test, y.train, k=3)
table(knn.pred, y.test)
mean(y.test==knn.pred)
t <- table(knn.pred, y.test)
tn <- t[1, 1]
fn <- t[1, 2]
fp <- t[2, 1]
tp <- t[2, 2]
sensitivity3 <- tp/(tp + fn)
specificity3 <- tn/(tn + fp)
accuracy3 <- (tp + tn)/(tp + tn + fp +fn)
accuracy3
sensitivity3
specificity3

errate <- numeric(7)
flexibility <- numeric(7)
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sensitivity <- numeric(7)
specificity <- numeric(7)
accuracy <- numeric(7)

for (i in 1:7){
flexibility[i] <- 1/i
knn.pred <- knn(x.train, x.test, y.train, k=i)
t <- table(knn.pred, y.test)
errate[i] <- 1- mean(y.test==knn.pred)
tn <- t[1, 1]
fn <- t[1, 2]
fp <- t[2, 1]
tp <- t[2, 2]
sensitivity[i] <- tp/(tp + fn)
specificity[i] <- tn/(tn + fp)
accuracy[i] <- (tp + tn)/(tp + tn + fp +fn)
}

yscale = c(0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40)
pdf("kNN.pdf")
par(mar=c(5, 4, 4, 8) +0.1)
plot(flexibility, errate, type="b", pch=21, col="black", yaxt="n",
ann=FALSE, ylim=c(0, 0.40))
lines(flexibility, sensitivity, pch=21, col="red", yaxt="n", lty=2, type="b")
axis(2, at=yscale, labels=round(yscale, digits=2), col.axis="black", las=2)
axis(4, at=yscale, labels=round(yscale, digits=2), col.axis="red", las=2)
mtext("Sensitivity", side=4, line=3, cex.lab=1, las=0, col="red")
title("k Nearest Neighbor Test Error Rate\n and Sensitivity vs Flexibility",
xlab="Flexibility = 1/k", ylab="Test Error Rate")
par(opar)
dev.off()

sensitivity
specificity
accuracy
errate
#-------------------------------------------------------------
# Binary Outcome Prediction - Second Classification method
# SVM with radial kernel
#-------------------------------------------------------------
install.packages("e1071")
library(e1071)

# The data have been standardized before

dat <- data.frame(x=x.train, y=as.factor(y.train))
str(dat)
testdat <- data.frame(x=x.test, y=as.factor(y.test))
str(testdat)

# SVM : radial kernel :

out <- svm(y˜., data=dat, kernel="radial", gamma=1, cost=1, scale=TRUE)
summary(out)

20



Data Mining 2016/2017

table(out$fitted, dat$y)
accuracy <- (82+15)/(97)
accuracy

# decrease the cost :
svmfit <- svm(y˜., data=dat, kernel="radial", gamma=0.5, cost=0.5, scale=TRUE)
summary(svmfit)
table(svmfit$fitted, dat$y)

accuracy <- (82)/(97)
accuracy

# tuning cost :
set.seed(1)
tune.out <- tune(svm, y˜., data=dat, kernel="radial", scale=TRUE,
ranges=list(cost=c(1, 10, 100, 1000),
gamma=c(0.1, 0.5, 1, 1.5, 2, 3, 5)))
summary(tune.out)

bestmod <- tune.out$best.model
bestmod
summary(bestmod)

str(testdat)
head(testdat)

#--- Misclassification error :
table(true=testdat$y, pred=predict(tune.out$best.model, newx=testdat))

table(testdat$y)
tot <- 59+3+7+28
mis<-28+7
mis/tot

#-------------------------------------------------------------
# UNSUPERVISED LEARNING
# Hierarchical clustering :
#-------------------------------------------------------------
install.packages("hclust")
library("hclust")
hc.complete <- hclust(dist(x), method="complete")
hc.single <- hclust(dist(x), method="single")
hc.average <- hclust(dist(x), method="average")
hc.complete
hc.single
hc.average

plot(hc.complete, cex=.9)
plot(hc.single, cex=.9)
plot(hc.average, cex=.9)
cutree(hc.average, 4)
opar
xsc=scale(x)
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hc.average <- hclust(dist(xsc), method="average")

plot(hclust(dist(xsc), method="average"), hang=-1, cex=.8,
main="Hierarchical Average Linkage Clustering with scaled
features")

ct.hclust <-table(Type, cutree(hc.average,4))
ct.hclust
install.packages("flexclust")
library(flexclust)
randIndex(ct.hclust)

install.packages("NbClust")
library(NbClust)
devAskNewPage(ask=TRUE)
nc <- NbClust(xsc, distance="euclidean", min.nc=2, max.nc=15,
method="average")
table(nc$Best.n[1,])
clusters <- cutree(hc.average, k=9)
table(clusters)
aggregate(x, by=list(cluster=clusters), median)
plot(hc.average, hang=-1, cex=.8, main="Average Linkage
Clustering\n 9 Cluster Solution")
rect.hclust(hc.average, k=9)

# perform hierarchical clustering on the 4 PC score vectors :
pr.out <- prcomp(x, scale=TRUE)
pr.out
summary(pr.out)
plot(pr.out)
hc.out <- hclust(dist(pr.out$x[, 1:4]))
Type <- toupper(Type)
Type
pdf("hierarchyPC4.pdf")
plot(hc.out, labels=Type, hang=0, main="Hier. Clust. on First
4 Score Vectors")
dev.off()

#---------------------------------------------------------------
# UNSUPERVISED LEARNING
# Partition Clustering with PAM (Partition around Medoids):
#---------------------------------------------------------------
head(x)
str(x)
Type <- factor(NoMissBC$BinY)
Type
BinX <- cbind(Type, x)
head(BinX)
library(cluster)
set.seed(1234)
fit.pam <- pam (x, k=2, stand=TRUE)
fit.pam$medoids
NoMissBC$ID[126]
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NoMissBC$ID[51]
opar
par(mfrow=c(1, 2))
clusplot(fit.pam, main="Bivariate Cluster Plot")
ct.pam <-table(Type, fit.pam$clustering)
ct.pam
install.packages("flexclust")
library(flexclust)
randIndex(ct.pam)
par(mfrow=c(1, 2))
plot(fit.pam)
opar
Type[126]
Type[51]

23


